Add like
Add dislike
Add to saved papers

Swimming Exercise Induced Reversed Expression of miR-96 and Its Target Gene NaV1.3 in Diabetic Peripheral Neuropathy in Rats.

Diabetes is a common metabolic disease which leads to diabetic peripheral neuropathy. Recently, the role of microRNA-96 (miR-96) in alleviating neuropathic pain by inhibiting the expression of NaV1.3, an isoform of voltage-gated sodium channels, has been shown. Peripheral nerve injuries result in NaV1.3 elevation. Exercise has beneficial role in diabetes management and peripheral neuropathy. However, the effects of exercise on miR-96 and its target gene NaV1.3 in diabetic rats are unknown. Therefore, the present study investigated the effects of exercise training on the expression of miR-96 and NaV1.3 in diabetic rats. For this purpose, rats were randomly divided into four groups: control, exercise, diabetic and diabetic-exercise groups. Type 2 diabetes was induced by a high-fat diet and the administration of streptozotocin (STZ) (35 mg/kg, i.p.). The exercise groups were subjected to swimming exercise 5 days/week for 10 weeks. At the end of the treatment period, thermal pain threshold, determined through the tail-flick test, and the expression levels of miR-96 and its target gene NaV1.3 were determined by reverse transcription (RT)-PCR in the sciatic nerve tissues of the rats. Data of the present study indicated that diabetes diminished miR-96 expression levels, but significantly upregulated NaV1.3 expression in the sciatic nerve. On exercise training, miR-96 expression was reversed with concurrent down-regulation of the NaV1.3 expression. This study introduced a new and potential miRNA-dependent mechanism for exerciseinduced protective effects against diabetic thermal hyperalgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app