Add like
Add dislike
Add to saved papers

Asymmetric Reductive Carbocyclization Using Engineered Ene Reductases.

Angewandte Chemie 2018 June 12
Ene reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β-unsaturated compounds bearing an electron-withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that members of this enzyme family can also catalyze the formation of C-C bonds. α,β-Unsaturated aldehydes and ketones containing an additional electrophilic group undergo reductive cyclization. Mechanistically, the two-electron-reduced enzyme cofactor FMN delivers a hydride to generate an enolate intermediate, which reacts with the internal electrophile. Single-site replacement of a crucial Tyr residue with a non-protic Phe or Trp favored the cyclization over the natural reduction reaction. The new transformation enabled the enantioselective synthesis of chiral cyclopropanes in up to >99 % ee.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app