Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Higher expression of miR-133b is associated with better efficacy of erlotinib as the second or third line in non-small cell lung cancer patients.

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (gefitinib, erlotinib and afatinib) are indicated as first-line therapy in patients with non-small cell lung cancer (NSCLC) whose tumors harbor activating mutations in the EGFR gene. Erlotinib is also used in second and third-line therapy for patients whose tumors have wild type EGFR but to date there are no validated biomarkers useful to identify which patients may benefit from this treatment. The expression level of four miRNAs: miR-133b, -146a, -7 and -21 which target EGFR was investigated by real-time PCR in tumor specimens from NSCLC patients treated with erlotinib administered as the second or third line. We found that miR-133b expression level better discriminated responder from non-responder patients to erlotinib. Higher levels of miR-133b in NSCLCs were associated with longer progression-free survival time of patients. Functional analyses on miR-133b through transfection of a miR-133b mimic in A549 and H1299 NSCLC cell lines indicated that increasing miR-133b expression level led to a decreased cell growth and altered morphology but did not affect sensitivity to erlotinib. The detection of miR-133b expression levels in tumors help in the identification of NSCLC patients with a better prognosis and who are likely to benefit from second and third-line therapy with erlotinib.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app