Add like
Add dislike
Add to saved papers

Synthesis and Structure of Sn 14 Cl 6 (CH 2 SiMe 3 ) 12 : Toward Nanoclusters of 4-Coordinate α-Sn.

Orange crystals of a Sn14 cluster have been isolated in up to 22% yield from a reaction between Me3 SiCH2 SnCl3 , SnCl4 , and LiAlH4 . The structure determined by single crystal X-ray diffraction shows three unique Sn atoms in a 6:6:2 ratio, with all Sn atoms 4-coordinate, similar to the tetrahedral bonding in elemental gray Sn. The solid state 117 Sn MAS NMR spectrum shows the three types of distinct Sn atoms in the expected 3:3:1 intensity ratio with respective chemical shifts of 87.9, -66.6, and -607.1 ppm relative to Me4 Sn. The chemical shift of the two Sn atoms without ligands (bonded only to Sn), at -607.1 ppm, is the most upfield, and is the closest to the chemical shift, reported here, of bulk gray tin (-910 ppm). First-principles density functional theory calculations of the chemical shielding tensors corroborate this assignment. While the core coordination is distorted from the ideal tetrahedral arrangement in the diamond structure of gray tin, this Sn14 cluster, as the largest reported cluster with all 4-coordinate Sn, represents a major incremental step toward being able to prepare atomically precise nanoparticles of gray tin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app