Add like
Add dislike
Add to saved papers

Equilibrium study of dried orange peel for its efficiency in removal of cupric ions from water.

Excess of copper ion (>2 mg/L) in water is toxic to human beings and the ecosystem. Various water treatment technologies for copper remediation have been investigated in the past. Along with industrial effluents, Bordeaux mixture is also a noteworthy copper contamination source in the agricultural ecosystem. In our study, the biosorbent efficiency of dried orange peel was investigated through an environment-friendly process for the removal of cupric ions. Effects of pH, adsorbate concentration, adsorbent dosage, and temperature for the removal of Cu (II) were studied. Slightly acidic environment (pH = 6) was found to be optimum for removal of copper. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The surface morphology of the adsorbent was studied using scanning electron microscope. Crystalline nonhomogenous surface was observed after copper adsorption. Desorption study indicated that 0.1N H2 SO4 is the best eluent for the removal of adsorbed copper from the powdered dried orange peel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app