Add like
Add dislike
Add to saved papers

Accurate prediction of Gram-negative bacterial secreted protein types by fusing multiple statistical features from PSI-BLAST profile.

Gram-negative bacterial secreted proteins play different roles in invaded eukaryotic cells and cause various diseases. Prediction of Gram-negative bacterial secreted protein types is a meaningful and challenging task. In this paper, we develop a multiple statistical features extraction model based on the dipeptide composition (DPC) descriptor and the detrended moving-average auto-cross-correlation analysis (DMACA) descriptor by PSI-BLAST profile. A 610-dimensional feature vector was constructed on the training set, and the feature extraction model was denoted DPC-DMACA-PSSM. A support vector machine was then selected as a classifier, and the bias-free jackknife test method was used for evaluating the accuracy. Our predictor achieves favourable performance for overall accuracy on the test set and also outperforms the other published approaches. The results show that our approach offers a reliable tool for the identification of Gram-negative bacterial secreted protein types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app