Add like
Add dislike
Add to saved papers

A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates.

Oligomerization of misfolded protein species is implicated in many human disorders. Here we showed by size-exclusion chromatography-coupled multiangle light scattering (SEC-MALS) and small-angle X-ray scattering (SEC-SAXS) that urea-induced folding intermediate of human ubiquitin C-terminal hydrolase, UCH-L1, can form well-defined dimers and tetramers under denaturing conditions despite being highly disordered. Introduction of a Parkinson disease-associated mutation, I93M, resulted in increased aggregation propensity and formation of irreversible precipitants in the presence of a moderate amount of urea. Since UCH-L1 exhibits highly populated partially unfolded forms under native conditions that resemble urea-induced folding intermediates, it is likely that these metastable dimers and tetramers can form under physiological conditions. Our findings highlighted the unique strength of integrated SEC-MALS/SAXS in quantitative analyses of the structure and dynamics of oligomeric folding intermediates that enabled us to extract information that is inaccessible to conventional biophysical techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app