Add like
Add dislike
Add to saved papers

Limitations of skipping echoes for exponential T 2 fitting.

BACKGROUND: Exponential fitting of multiecho spin echo sequences with skipped echoes is still commonly used for quantification of transverse relaxation (T2 ).

PURPOSE: To examine the efficacy of skipped echo methods for T2 quantification against computational modeling of the exact signal decay.

STUDY TYPE: Prospective comparison of methods.

SUBJECTS/PHANTOM: Eight volunteers were imaged at 4.7T, six volunteers at 1.5T, and phantoms ([MnCl2 ] = 68-270 mM).

FIELD STRENGTH/SEQUENCE: 1.5T and 4.7T; multiple-echo spin echo.

ASSESSMENT: Exponential fitting for T2 using all echoes, skipping the first echo or skipping all odd echoes, compared with Bloch simulations. Resulting T2 values were examined over a range of T2 (10-150 msec), refocusing flip angles (90-270°), and echo train lengths (ETL = 6-32).

STATISTICAL TESTS: Shapiro-Wilk tests and Q-Q plots were used to check for normality of data. Paired sample t-tests and Wilcoxon rank tests were used to compare fitting models using α = 0.05. Multiple comparisons were accounted for with Bonferroni correction.

RESULTS: In examined regions of interest, typical incorrect estimation of T2 ranged from 23-39% for exponential fitting of all echoes, or 15-32% for skipped echo methods. In vivo, T2 estimation error was reduced to as little as 10% with skipped echo methods using 180° refocusing and ETL = 8, although error varied due to refocusing angle, T2 , and ETL. In vivo, skipped echo T2 values were significantly different than all echo exponential fitting (P < 0.004), but also were significantly different from reference values (P < 0.002, except frontal white matter). Simulations showed skipping the first echo was the most effective form of exponential fitting, in particular for T2 <50 msec and ETL = 8, with potential to reduce T2 errors to 10%, depending on refocusing angle and T2 .

DATA CONCLUSION: Skipping echoes is insufficient for avoiding stimulated echo contamination. Resulting T2 errors depend on a complicated interplay of T2 , refocusing angle, and ETL. Modeling of the multiecho sequence is recommended.

LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1432-1440.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app