Add like
Add dislike
Add to saved papers

Distributed Bragg Reflectors as Broadband and Large-Area Platforms for Light-Coupling Enhancement in 2D Transition-Metal Dichalcogenides.

Two-dimensional (2D) semiconductors, particularly the direct-gap monolayer transition metal dichalcogenides (TMDs), are currently being developed for various atomically thin optoelectronic devices. However, practical applications are hindered by their low quantum efficiencies in light emissions and absorptions. While photonic cavities and metallic plasmonic structures can significantly enhance the light-matter interactions in TMDs, the narrow spectral resonance and the local hot spots considerably limit the applications when broadband and large area are required. Here, we demonstrate that a properly designed distributed Bragg reflector (DBR) can be an ideal platform for light-coupling enhancement in 2D TMDs. The main idea is based on engineering the amplitude and phase of optical reflection from the DBR to produce optimal substrate-induced interference. We show that the photoluminescence, Raman, and second harmonic generation signals of monolayer WSe2 can be enhanced by a factor of 26, 34, and 58, respectively. The proposed DBR substrates pave the way for developing a range of 2D optoelectronic devices for broadband and large-area applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app