Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients.

Mikrochimica Acta 2018 April 24
Monodisperse nonmagnetic macroporous poly(glycidyl methacrylate) (PGMA) microspheres were synthesized by multistep swelling polymerization of glycidyl methacrylate, ethylene dimethacrylate and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). This was followed (a) by ammonolysis to modify the microspheres with amino groups, and (b) by incorporation of iron oxide (γ-Fe2 O3 ) into the pores to render the particles magnetic. The resulting porous and magnetic microspheres were characterized by scanning and transmission electron microscopy (SEM and TEM), atomic absorption and Fourier transform infrared spectroscopy (AAS and FTIR), elemental analysis, vibrating magnetometry, mercury porosimetry and Brunauer-Emmett-Teller adsorption/desorption isotherms. The microspheres are meso- and macroporous, typically 5 μm in diameter, contain 0.9 mM · g-1 of amino groups and 14 wt.% of iron according to elemental analysis and AAS, respectively. The particles were conjugated to p46/Myo1C protein, a potential biomarker of autoimmune diseases, to isolate specific autoantibodies in the blood of patients suffering from multiple sclerosis (MS). The p46/Myo1C loaded microspheres are shown to enable the preconcentration of minute quantities of specific immunoglobulins prior to their quantification via SDS-PAGE. The immunoglobulin M (IgM) with affinity to Myo1C was detected in MS patients. Graphical abstract Monodisperse magnetic poly(glycidyl methacrylate) microspheres were synthesized, conjugated with 46 kDa form of unconventional Myo1C protein (p46/Myo1C) via carbodiimide (DIC) chemistry, and specific autoantibodies isolated from blood of multiple sclerosis (MS) patients; immunoglobulin M (IgM) level increased in MS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app