Add like
Add dislike
Add to saved papers

Diaphragm function and weaning from mechanical ventilation: an ultrasound and phrenic nerve stimulation clinical study.

BACKGROUND: Diaphragm dysfunction is defined by a value of twitch tracheal pressure in response to magnetic phrenic stimulation (twitch pressure) amounting to less than 11 cmH2 O. This study assessed whether this threshold or a lower one would predict accurately weaning failure from mechanical ventilation. Twitch pressure was compared to ultrasound measurement of diaphragm function.

METHODS: In patients undergoing a first spontaneous breathing trial, diaphragm function was evaluated by twitch pressure and by diaphragm ultrasound (thickening fraction). Receiver operating characteristics curves were computed to determine the best thresholds predicting failure of spontaneous breathing trial.

RESULTS: Seventy-six patients were evaluated, 48 (63%) succeeded and 28 (37%) failed the spontaneous breathing trial. The optimal thresholds of twitch pressure and thickening fraction to predict failure of the spontaneous breathing trial were, respectively, 7.2 cmH2 O and 25.8%, respectively. The receiver operating characteristics curves were 0.80 (95% CI 0.70-0.89) for twitch pressure and 0.82 (95% CI 0.73-0.93) for thickening fraction. Both receiver operating characteristics curves were similar (p = 0.83). A twitch pressure value lower than 11 cmH2 O (the traditional cutoff for diaphragm dysfunction) predicted failure of the spontaneous breathing trial with a sensitivity of 89% (95% CI 72-98%) and a specificity of 45% (95% CI 30-60%).

CONCLUSIONS: Failure of spontaneous breathing trial can be predicted with a lower value of twitch pressure than the value defining diaphragm dysfunction. Twitch pressure and thickening fraction had similar strong performance in the prediction of failure of the spontaneous breathing trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app