Add like
Add dislike
Add to saved papers

Evidence that Clostridium perfringens Enterotoxin-Induced Intestinal Damage and Enterotoxemic Death in Mice Can Occur Independently of Intestinal Caspase-3 Activation.

Clostridium perfringens enterotoxin (CPE) is responsible for the gastrointestinal symptoms of C. perfringens type A food poisoning and some cases of nonfoodborne gastrointestinal diseases, such as antibiotic-associated diarrhea. In the presence of certain predisposing medical conditions, this toxin can also be absorbed from the intestines to cause enterotoxemic death. CPE action in vivo involves intestinal damage, which begins at the villus tips. The cause of this CPE-induced intestinal damage is unknown, but CPE can induce caspase-3-mediated apoptosis in cultured enterocyte-like Caco-2 cells. Therefore, the current study evaluated whether CPE activates caspase-3 in the intestines and, if so, whether this effect is required for the development of intestinal tissue damage or enterotoxemic lethality. Using a mouse ligated small intestinal loop model, CPE was shown to cause intestinal caspase-3 activation in a dose- and time-dependent manner. Most of this caspase-3 activation occurred in epithelial cells shed from villus tips. However, CPE-induced caspase-3 activation occurred after the onset of tissue damage. Furthermore, inhibition of intestinal caspase-3 activity did not affect the onset of intestinal tissue damage. Similarly, inhibition of intestinal caspase-3 activity did not reduce CPE-induced enterotoxemic lethality in these mice. Collectively, these results demonstrate that caspase-3 activation occurs in the CPE-treated intestine but that this effect is not necessary for the development of CPE-induced intestinal tissue damage or enterotoxemic lethality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app