Add like
Add dislike
Add to saved papers

PD-1 immune checkpoint blockade promotes brain leukocyte infiltration and diminishes cyst burden in a mouse model of Toxoplasma infection.

Tissue cysts, the hallmark of chronic Toxoplasma gondii infection, are predominantly located in the brain making clearance of the parasite difficult. Currently available anti-T. gondii drugs are ineffective on cysts and fail to prevent reactivation of latent toxoplasmosis. We examined whether abrogation of inhibitory signaling pathways that maintain T cells in an exhausted state can be exploited for treating T. gondii tissue cysts. By using a mouse model of chronic toxoplasmosis, we showed immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway results in a significant reduction in brain cyst number (77% lower). We showed leukocyte infiltration (CD3+ T cells, CD8+ T cells, and CD11b + cells) in the leptomeninges, choroid plexus, and subependymal tissue, which are known routes of entry of immune cells into the brain, and in proximal brain parenchyma. Our study provides proof of concept for blockade of immune checkpoint inhibitors as a therapy for chronic toxoplasmosis and potentially for other brain pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app