Add like
Add dislike
Add to saved papers

Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios.

Nickel (Ni) contaminated soils pose a potential ecological risk to the environment, soil health, and quality of food produced on them. We hypothesized that application of miscanthus biochar (BC) and cationic zeolite (ZE) at various proportions into a Ni contaminated soil can efficiently immobilize Ni and reduce its bioavailability to sunflower (Helianthus annuus L.) and maize (Zea mays L.). An electroplating effluent contaminated soil was amended with BC and ZE, as sole treatments (2% w/w) and their combinations of various ratios (BC, ZE, BC25%ZE75%, BC50%ZE50% and BC75%ZE25%) for immobilization of Ni in the soil. Furthermore, the associated effects of these treatments on residual and DTPA-extractable Ni from the soil; concentrations of Ni in shoots, roots, and grain; growth, physiology, biochemistry and the antioxidant defence mechanisms of sunflower and maize were investigated. Results revealed that BC50%ZE50% treatment efficiently reduced DTPA-extractable Ni in the soil, Ni concentrations in shoots, roots, and grain, while improved selective parameters of both plants. Interestingly, the BC75%ZE25% treatment significantly improved the biomass, grain yield, physiology, biochemistry and antioxidant defense machinery, while decreased Ni oxidative stress in both sunflower and maize, compared to rest of the treatments. The results demonstrate that the BC50%ZE50% treatment can efficiently reduce Ni concentrations in the roots, shoots and grain of both sunflower and maize whereas, an improvement in biomass, grain yield, physiological, biochemical, and antioxidant defense machinery of both crops can only be achieved with the application of BC75%ZE25% treatment in a Ni contaminated soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app