Add like
Add dislike
Add to saved papers

Impaired TGF-β signaling in patients with active systemic lupus erythematosus is associated with an overexpression of IL-22.

Cytokine 2018 August
The mechanisms leading to the disruption of self-tolerance in systemic lupus erythematosus (SLE) remain elusive. Herein, we aimed to decipher the molecular basis of the impaired response of mononuclear cells to TGF-β1. The Smad3-pathway was explored on CD3+ lymphocytes in either active or non active SLE patients. An impaired transcription of TGF-β1 target genes was demonstrated in the CD3+ lymphocytes of active SLE patients confirming that the defect involves T cells and pointing to its extrinsic nature. We further demonstrate that the defect did not result from an impaired TGF-βRII expression or Smad2/3 phosphorylation suggesting that the mechanism lies downstream Smad2/3 translocation. Interestingly, the TGF-1 signaling defect did not correlate with an increased expression of soluble or membrane-bound IL-15. However, it was associated with an overexpression of IL-22. This suggests that an excessive activation of AhR pathway (through UV radiations, infections, etc.) could lead to the inhibition of immunosuppressive actions of TGF-β thus disrupting immune homeostasis in SLE. Collectively, our data suggest that the impaired response to TGF-β in SLE patients is associated with disease activity and provide new insights into the pathogenesis of SLE since it could establish the link between the environmental factors and the aberrancies of the immune system usually described in SLE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app