Add like
Add dislike
Add to saved papers

Anti-Trypanosoma cruzi action of a new benzofuran derivative based on amiodarone structure.

Chagas disease is a neglected tropical affection caused by the protozoan parasite Trypanosoma cruzi. There is no current effective treatment since the only two available drugs have a limited efficacy and produce side effects. Thus, investigation efforts have been directed to the identification of new drug leads. In this context, Ca2+ regulating mechanisms have been postulated as targets for antiparasitic compounds, since they present paramount differences when compared to host cells. Amiodarone is an antiarrhythmic with demonstrated trypanocidal activity acting through the disruption of the parasite intracellular Ca2+ homeostasis. We now report the effect of a benzofuran derivative based on the structure of amiodarone on T. cruzi. This derivative was able to inhibit the growth of epimastigotes in culture and of amastigotes inside infected cells, the clinically relevant phase. We also show that this compound, similarly to amiodarone, disrupts Ca2+ homeostasis in T. cruzi epimastigotes, via two organelles involved in the intracellular Ca2+ regulation and the bioenergetics of the parasite. We demonstrate that the benzofuran derivative was able to totally collapse the membrane potential of the unique giant mitochondrion of the parasite and simultaneously produced the alkalinization of the acidocalcisomes. Both effects are evidenced by a large increase in the intracellular Ca2+ concentration of T. cruzi.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app