Add like
Add dislike
Add to saved papers

Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor β/IL-1/c-MET signals.

Cancer Letters 2018 August 29
Clinical data indicates that T cells can be recruited to bladder cancer (BCa), yet the impact of T cells on BCa progression remains unclear. In the present study, we found that T cells were recruited more to BCa tissues than to the surrounding normal bladder tissues. Results from an in vitro co-culture system also found that BCa recruited more CD4+ T cells than did normal bladder cells. The recruiting of T cells to BCa tissues may increase the proliferation and invasion of BCa cells. Mechanistic studies revealed that infiltrating T cells stimulate BCa estrogen receptor beta (ERβ) signaling and consequently increase the expression of MET proto-oncogene, receptor tyrosine kinase (c-MET), through either direct binding to its promoter or via modulation of IL-1 expression. Interruption of ERβ/c-MET or ERβ/IL-1/c-MET signaling via ERβ-shRNA, IL-1 antagonist, or the c-MET inhibitor, SU11274, could partially reverse the T cell-enhanced BCa cell invasion and proliferation. Finally, the mouse BCa model with xenografted BCa 5637 cells with T (HH) cells confirmed the results of in vitro co-culture studies showing that infiltrating T cells could promote BCa metastasis via modulation of the ERβ/c-MET or ERβ/IL-1/c-MET signaling pathways. These findings may provide a new therapeutic approach to better combat BCa progression via targeting these newly identified signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app