Add like
Add dislike
Add to saved papers

Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening.

Toll-like receptor 2 (TLR2) induces early inflammatory responses to pathogen and damage-associated molecular patterns trough heterodimerization with either TLR1 or TLR6. Since overstimulation of TLR2 signaling is linked to several inflammatory and metabolic diseases, TLR2 antagonists may provide therapeutic benefits for the control of inflammatory conditions. We present virtual screening for the identification of novel TLR2 modulators, which combines analyses of known ligand sets with structure-based approaches. The 13 identified compounds were pharmacologically characterized in HEK293-hTLR2 cells, THP-1 macrophages and peripheral blood mononuclear cells for their ability to inhibit TLR2-mediated responses. Four out of 13 selected compounds show concentration-dependent activity, representing a hit rate of 31%. The most active compound is the pyrogallol derivative MMG-11 that inhibits both TLR2/1 and TLR2/6 signaling and shows a higher potency than the previously discovered CU-CPT22. Concentration ratio analysis identified both compounds as competitive antagonists of Pam3 CSK4 - and Pam2 CSK4 -induced responses. Schild plot analysis yielded apparent pA2 values of 5.73 and 6.15 (TLR2/1), and 5.80 and 6.65 (TLR2/6) for CU-CPT22 and MMG-11, respectively. MMG-11 neither shows cellular toxicity nor interference with signaling induced by other TLR agonists, IL-1β or TNF. Taken together, we demonstrate that MMG-11 is a potent and selective TLR2 antagonist with low cytotoxicity rendering it a promising pharmacological tool for the investigation of TLR signaling and a suitable lead structure for further chemical optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app