Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Extracavity Effect in Cyclodextrin/Surfactant Complexation.

Cyclodextrin (CD) complexation is a convenient method to sequester surfactants in a controllable way, for example, during membrane-protein reconstitution. Interestingly, the equilibrium stability of CD/surfactant inclusion complexes increases with the length of the nonpolar surfactant chain even beyond the point where all hydrophobic contacts within the canonical CD cavity are saturated. To rationalize this observation, we have dissected the inclusion complexation equilibria of a structurally well-defined CD, that is, heptakis(2,6-di- O-methyl)-β-CD (DIMEB), and a homologous series of surfactants, namely, n-alkyl- N, N-dimethyl-3-ammonio-1-propanesulfonates (SB3- x) with chain lengths ranging from x = 8 to 14. Thermodynamic parameters obtained by isothermal titration calorimetry and structural insights derived from nuclear magnetic resonance spectroscopy and molecular dynamics simulations revealed that, upon inclusion, long-chain surfactants with x = ≥10 extend beyond the canonical CD cavity. This enables the formation of hydrophobic contacts between long surfactant chains and the extracavity parts of DIMEB, which make additional favorable contributions to the stability of the inclusion complex. These results explain the finding that the stability of CD/surfactant inclusion complexes monotonously increases with the surfactant chain length even for long chains that completely fill the canonical CD cavity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app