Add like
Add dislike
Add to saved papers

Blue- and Red-Shifting Hydrogen Bonding: A Gas Phase FTIR and Ab Initio Study of RR'CO···DCCl 3 and RR'S···DCCl 3 Complexes.

Blue-shifting H-bonded (C-D···O) complexes between CDCl3 and CH3 HCO, (CH3 )2 CO, and C2 H5 (CH3 )CO, and red-shifting H-bonded (C-D···S) complexes between CDCl3 with (CH3 )2 S and (C2 H5 )2 S have been identified by Fourier transform infrared spectroscopy in the gas phase at room temperature. With increasing partial pressure of the components, a new band appears in the C-D stretching region of the vibrational spectra. The intensity of this band decreases with an increase in temperature at constant pressure, which provides the basis for identification of the H-bonded bands in the spectrum. The C-D stretching frequency of CDCl3 is blue-shifted by +7.1, +4, and +3.2 cm-1 upon complexation with CH3 HCO, (CH3 )2 CO, and C2 H5 (CH3 )CO, respectively, and red-shifted by -14 and -19.2 cm-1 upon complexation with (CH3 )2 S and (C2 H5 )2 S, respectively. By using quantum chemical calculations at the MP2/6-311++G** level, we predict the geometry, electronic structural parameters, binding energy, and spectral shift of H-bonded complexes between CDCl3 and two series of compounds named RCOR' (H2 CO, CH3 HCO, (CH3 )2 CO, and C2 H5 (CH3 )CO) and RSR' (H2 S, CH3 HS, (CH3 )2 S, and (C2 H5 )2 S) series. The calculated and observed spectral shifts follow the same trends. With an increase in basicity of the H-bond acceptor, the C-D bond length increases, force constant decreases, and the frequency shifts to the red from the blue. The potential energy scans of the above complexes are done, which show that electrostatic attraction between electropositive D and electron-rich O/S causes bond elongation and red shift, and the electronic and nuclear repulsions lead to bond contraction and blue shifts. The dominance of the two opposing forces at the equilibrium geometry of the complex determines the nature of the shift, which changes both in magnitude and in direction with the basicity of the hydrogen-bond acceptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app