Add like
Add dislike
Add to saved papers

3-Input/1-Output Logic Implementation Demonstrated by DNA Algorithmic Self-Assembly.

ACS Nano 2018 May 23
Although structural DNA nanotechnology is a well-established field, computations performed using DNA algorithmic self-assembly is still in the primitive stages in terms of its adaptability of rule implementation and experimental complexity. Here, we discuss the feasibility of constructing an M-input/ N-output logic gate implemented into simple DNA building blocks. To date, no experimental demonstrations have been reported with M > 2 owing to the difficulty of tile design. To overcome this problem, we introduce a special tile referred to as an operator. We design appropriate binding domains in DNA tiles, and we demonstrate the growth of DNA algorithmic lattices generated by eight different rules from among 256 rules in a 3-input/1-output logic. The DNA lattices show simple, linelike, random, and mixed patterns, which we analyze to obtain errors and sorting factors. The errors vary from 0.8% to 12.8% depending upon the pattern complexity, and sorting factors obtained from the experiment are in good agreement with simulation results within a range of 1-18%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app