Add like
Add dislike
Add to saved papers

Efficient Capture and High Activity Release of Circulating Tumor Cells by Using TiO 2 Nanorod Arrays Coated with Soluble MnO 2 Nanoparticles.

Effective capture and release of circulating tumor cells (CTCs) with high viability is still a challenge in medical research. We design a novel approach with efficient yield and high cell activity for the capture and release of CTCs. Our platform is based on TiO2 nanorod arrays coated with transparent MnO2 nanoparticles. We use hydrothermal synthesis to prepare TiO2 nanorod arrays, the MnO2 nanoparticles are fabricated through in situ self-assembly on the substrate to form a monolayer and etched by oxalic acid with low concentration at room temperature. Up to 92.9% of target cells are isolated from the samples using our capture system and the captured cells can be released from the platform, the saturated release efficiency is 89.9%. Employing lower than 2 × 10-3 M concentration of oxalic acid to dissolve MnO2 , the viability of MCF-7 cancer cells exceed 90%. Such a combination of the two-dimensional and three-dimensional platforms provides a new approach isolate CTCs from patient blood samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app