JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Detergent-free Ultrafast Reconstitution of Membrane Proteins into Lipid Bilayers Using Fusogenic Complementary-charged Proteoliposomes.

Detergents are indispensable for delivery of membrane proteins into 30-100 nm small unilamellar vesicles, while more complex, larger model lipid bilayers are less compatible with detergents. Here we describe a strategy for bypassing this fundamental limitation using fusogenic oppositely charged liposomes bearing a membrane protein of interest. Fusion between such vesicles occurs within 5 min in a low ionic strength buffer. Positively charged fusogenic liposomes can be used as simple shuttle vectors for detergent-free delivery of membrane proteins into biomimetic target lipid bilayers, which are negatively charged. We also show how to reconstitute membrane proteins into fusogenic proteoliposomes with a fast 30-min protocol. Combining these two approaches, we demonstrate a fast assembly of an electron transport chain consisting of two membrane proteins from E. coli, a primary proton pump bo3-oxidase and F1Fo ATP synthase, in membranes of vesicles of various sizes, ranging from 0.1 to >10 microns, as well as ATP production by this chain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app