Add like
Add dislike
Add to saved papers

Fractionation of polyphenols from thermomechanical pulp mill process water by flotation and membrane integrated process.

Fractionation of phenolic compounds in thermomechanical pulp mills was performed with a coupling of a prior treatment realized by flotation and a ceramic membrane process. Two lines of membranes filtration were tested. After a common 150 kDa clarification, 1 kDa filtration was performed with or without previous 5 kDa filtration. Flotation was shown to be inevitable to retain lipophilic compounds which cause severe membrane fouling. 150 kDa permeate flux was 20% higher when process water was firstly floated and was around 260 L h-1  m-2 . 1 kDa membrane was fouled with 31% of irreversible fouling without previous 5 kDa filtration and phenolic compounds purity reached only 26% in this 1 kDa permeate. Phenolic compounds as lignin-like substances which might be attached to hemicelluloses were recovered in 5 kDa retentate. Retentate of 1 kDa might contain a major fraction of lignin derivatives with molecular weights around 1 kDa free or linked with phenolic acids. Permeate of 1 kDa contained 14% of phenolic compounds such as lignans and free phenolic acids purified at 50%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app