Add like
Add dislike
Add to saved papers

Imaging of copper oxygenation reactions in a bubble flow.

Reactions of gases with liquids play a crucial role in the production of many bulk chemicals. Often, the gas is bubbled into the chosen reactor. Most of the processes at the gas-liquid interface of the bubbles and in their tails are not fully understood and warrant further investigation. For this purpose, NMR imaging or Magnetic Resonance Imaging has been applied to visualize some of the processes in the bubble tail. To generate sufficient contrast, a magnetogenic gas-liquid reaction associated with a change of magnetic state, from diamagnetic to paramagnetic, was employed. In this work, a copper(I)-based compound was oxidized to copper(II) to exploit relaxation contrast. To match the speed of the rising bubbles to the acquisition time of the spin-echo imaging sequence, polyethylene glycol was added to increase the viscosity of the reacting solution. Images of the oxygen ingress into a static solution as well as of oxygen bubbles rising in the solution are presented. In both cases, changes in magnetism were observed, which reported the hydrodynamic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app