Add like
Add dislike
Add to saved papers

Nickel-Catalyzed Suzuki-Miyaura Coupling of Aliphatic Amides.

ACS Catalysis 2018 Februrary 3
We report the Ni-catalyzed Suzuki-Miyaura coupling of aliphatic amide derivatives. Prior studies have shown that aliphatic amide derivatives can undergo Ni-catalyzed carbon-heteroatom bond formation but that Ni-mediated C-C bond formation using aliphatic amide derivatives has remained difficult. The coupling disclosed herein is tolerant of considerable variation with respect to both the amide-based substrate and the boronate coupling partner and proceeds in the presence of heterocycles and epimerizable stereocenters. Moreover, a gram-scale Suzuki-Miyaura coupling/Fischer indolization sequence demonstrates the ease with which unique polyheterocyclic scaffolds can be constructed, particularly by taking advantage of the enolizable ketone functionality present in the cross-coupled product. The methodology provides an efficient means to form C-C bonds from aliphatic amide derivatives using nonprecious-metal catalysis and offers a general platform for the heteroarylation of aliphatic acyl electrophiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app