Add like
Add dislike
Add to saved papers

STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma.

Oncotarget 2018 March 31
Peripheral T-cell lymphoma (PTCL) is a rare, aggressive, heterogeneous, Non-Hodgkin's lymphoma with poor prognosis and inadequate response to current therapies. Recent sequencing studies indicate a prevalence of activating mutations in the JAK/STAT signaling pathway. Oncogenic mutations in STAT5B, observed in approximately one third of cases of multiple different PTCL subtypes, correlate with inferior patient outcomes. Therefore, interest in the development of therapeutic strategies for targeting STAT5 in PTCL is warranted. In this study, we show that the drug pimozide inhibits STAT5 in PTCL, leading to apoptotic cell death by means of the TRAIL/DR4 dependent extrinsic apoptotic pathway. Pimozide induced PTCL cell death is caspase 8 dependent, increases the expression of the TRAIL receptor, DR4, on the surface of pre-apoptotic PTCL cells, and enhances TRAIL induced apoptosis in a TRAIL dependent manner. In parallel, we show that mRNA and protein levels of intrinsic pathway BCL-2 family members and mitochondrial membrane potential remain unaffected by STAT5 knockdown and/or inhibition. In primary PTCL patient samples, pimozide inhibits STAT5 activation and induces apoptosis. Our data support a role for STAT5 inhibition in PTCL and implicate potential utility for inhibition of STAT5 and activation of the extrinsic apoptotic pathway as combination therapy in PTCL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app