Add like
Add dislike
Add to saved papers

Application of a double-colour upconversion nanofluorescent probe for targeted imaging of mantle cell lymphoma.

Oncotarget 2018 March 31
Upconversion nanoparticles are a new type of fluorescent marker in biomedical imaging that can convert a longer wavelength (such as near-infrared fluorescence) into a shorter wavelength (such as visible light). Mantle cell lymphoma, which is derived from B-cell lymphoma, is a subtype of non-Hodgkin's lymphoma, and the immune phenotype is a mature B-cell phenotype (CD20+, CD5+). To develop the use of nanomaterials as specific markers for the medical imaging of mantle cell lymphoma, we modified the surface of UCNPs by oxidation so that the CD20 or CD5 antibody could covalently attach to the upconversion nanoparticles to form antibody-UCNP conjugates. These antibody-UCNP conjugates were used as fluorescent probes to detect the CD20 or CD5 antigen. Due to the excessive expression of these antigens on the surface of MCL cells and successful strong connection between the antibody and UCNPs, the latter could specifically combine with mantle cell lymphoma cells. Upon near-infrared excitation at 980 nm, cells labelled with UCNPs emitted bright upconversion fluorescence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app