Add like
Add dislike
Add to saved papers

Predicting Alzheimer's Disease Cognitive Assessment via Robust Low-Rank Structured Sparse Model.

Alzheimer's disease (AD) is a neurodegenerative disorder with slow onset, which could result in the deterioration of the duration of persistent neurological dysfunction. How to identify the informative longitudinal phenotypic neuroimaging markers and predict cognitive measures are crucial to recognize AD at early stage. Many existing models related imaging measures to cognitive status using regression models, but they did not take full consideration of the interaction between cognitive scores. In this paper, we propose a robust low-rank structured sparse regression method (RLSR) to address this issue. The proposed model simultaneously selects effective features and learns the underlying structure between cognitive scores by utilizing novel mixed structured sparsity inducing norms and low-rank approximation. In addition, an efficient algorithm is derived to solve the proposed non-smooth objective function with proved convergence. Empirical studies on cognitive data of the ADNI cohort demonstrate the superior performance of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app