Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential Fatty Acid-Binding Protein Expression in Persistent Radial Glia in the Human and Sheep Subventricular Zone.

Fatty acid-binding proteins (FABPs) are a family of transport proteins that facilitate intracellular transport of fatty acids. Despite abundant expression in the brain, the role that FABPs play in the process of cell proliferation and migration in the subventricular zone (SVZ) remains unclear. Our results provide a detailed characterisation of FABP3, 5, and 7 expression in adult and fetal human and sheep SVZ. High FABP5 expression was specifically observed in the adult human SVZ and co-labelled with polysialylated neural cell adhesion molecule (PSA-NCAM), glial fibrillary acidic protein (GFAP), GFAPδ, and proliferating cell nuclear antigen (PCNA), indicating a role for FABP5 throughout the full maturation process of astrocytes and neuroblasts. Some FABP5+ cells had a radial glial-like appearance and co-labelled with the radial glia markers vimentin (40E-C) and GFAP. In the fetal human brain, FABP5 was expressed by radial glia cells throughout the ventricular zone. In contrast, radial glia-like cells in sheep highly expressed FABP3. Taken together, these differences highlight the species-specific expression profile of FABPs in the SVZ. In this study, we demonstrate the distribution of FABP in the adult human SVZ and fetal ventricular zone and reveal its expression on persistent radial glia that may be involved in adult neurogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app