Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Strengthened functional connectivity among LFPs in rat medial prefrontal cortex during anxiety.

Theta oscillations in medial prefrontal cortex (mPFC) have been consistently implicated in the regulation of anxiety-related behaviors. However, the theta-band functional connectivity in mPFC is less well characterized. Therefore, we simultaneously recorded local filed potentials (LFPs) from mPFC in freely behaving rats in the elevated plus maze (EPM). Functional connectivity among LFPs was measured by directed transfer function (DTF) via spectral Granger causal connectivity analysis. Causal network was then identified based on DTF. Global efficiency (Eglob ) was selected to quantitatively describe the characteristic of the network. Our results showed that a significant difference in theta-band functional connectivity between safe and aversive location in the maze anxiety test. Strikingly, DTF and Eglob were higher specifically in the closed arms and decreased sharply prior to entrying into the open arms. These results indicate strengthened theta-band functional connectivity may be related to anxiety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app