JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Insight into a highly efficient electrolysis-ozone process for N,N-dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions.

Water Research 2018 September 2
A highly efficient electrolysis catalyzed ozone (ECO) process was developed for N,N-dimethylacetamide (DMAC) degradation. The pseudo-first-order rate constants (kobs ) of DMAC degradation by ECO process were 1.73-19.09 times greater than those by ozonation and electrolysis processes in a wide pH range of 3.0-10.0. Interestingly, we found O2 •- could be generated from ozone decomposition by a radical chain mechanism instead of monovalent reduction of O2 in ECO system at the initial pH of 3.0. Subsequently, the H2 O2 derived from O2 •- could participate in Fenton-like and peroxone reactions with the released Fe2+ from iron anode and the aerated O3 , respectively. Therefore, the extraordinary DMAC removal efficiency was mainly caused by the more generation of • OH through the multiple reactions of homogeneous catalytic ozonation, Fenton-like and peroxone in ECO system. Importantly, the roles of involved reactions in ECO system at various initial pH were quantitatively evaluated according to a series of trapping experiments. The results reveal that the solution pH could significantly affect the contributions of various reactions and convert the reaction mechanisms of multiple reactions in ECO system. Finally, the degradation intermediates were detected to propose a possible DMAC oxidation pathway in the ECO system. This work provides a deep insight into the quantitative analysis of the role of multiple oxidation reactions mechanism and the design of efficient electrochemical advanced oxidation technology for recalcitrant organic pollutant removal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app