Add like
Add dislike
Add to saved papers

Current and future effects of global change on a hotspot's freshwater diversity.

Deforestation, climate change and invasive species constitute three global threats to biodiversity that act synergistically. However, drivers and rates of loss of freshwater biodiversity now and in the future are poorly understood. Here we focus on the potential impacts of global change on freshwater mussels (Order Unionida) in Sundaland (SE Asia), a vulnerable group facing global declines and recognized indicators of overall freshwater biodiversity. We used an ensemble of distribution models to identify habitats potentially suitable for freshwater mussels and their change under a range of climate, deforestation and invasion scenarios. Our data and models revealed that, at present, Sundaland features 47 and 32 Mha of habitat that can be considered environmentally suitable for native and invasive freshwater mussels, respectively. We anticipate that by 2050, the area suitable for palm oil cultivation may expand between 8 and 44 Mha, representing an annual increase of 2-11%. This is expected to result in a 20% decrease in suitable habitat for native mussels, a drop that reaches 30% by 2050 when considering concomitant climate change. In contrast, the habitat potentially suitable for invasive mussels may increase by 44-56% under 2050 future scenarios. Consequently, native mussels may compete for habitat, food resources and fish hosts with invasive mussels across approximately 60% of their suitable range. Our projections can be used to guide future expeditions to monitor the conservation status of freshwater biodiversity, and potentially reveal populations of endemic species on the brink of extinction. Future conservation measures-most importantly the designation of nature reserves-should take into account trends in freshwater biodiversity generally, and particularly species such as freshwater mussels, vital to safeguard fundamental ecosystem services.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app