Add like
Add dislike
Add to saved papers

Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification.

Fe(II)-mediated autotrophic denitrification in the presence of copper (Cu), nickel (Ni) and zinc (Zn) with four different microbial cultures was investigated in batch bioassays. In the absence of metals, complete nitrate removal and Fe(II) oxidation were achieved with a Thiobacillus-dominated mixed culture and Pseudogulbenkiania sp. 2002 after 7 d. A nitrate removal of 96 and 91% was observed with a pure culture of T. denitrificans and an activated sludge enrichment, respectively, after 10 d of incubation. Cu, Ni and Zn were then supplemented at an initial concentration of 5, 10, 20 and 40 mg Me/L. A decrease of approximately 50% of the soluble metal concentrations occurred in the first 4 d of denitrification, due to metal precipitation, co-precipitation, sorption onto iron (hydr)oxides, and probably sorption onto biomass. A higher sensitivity to metal toxicity was observed for the microbial pure cultures. Pseudogulbenkiania sp. 2002 was the least tolerant among the biomasses tested, resulting in only 6, 8 and 6% nitrate removal for the highest Cu, Ni and Zn concentrations, respectively. In contrast, the highest nitrate removal efficiency and specific rates were achieved with the Thiobacillus-dominated mixed culture, which better tolerated the presence of metals. Averagely, Cu resulted in the highest inhibition of nitrate removal, followed by Zn and Ni.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app