Add like
Add dislike
Add to saved papers

Vertebral Bone Mineral Density Measured by Quantitative Computed Tomography With and Without a Calibration Phantom: A Comparison Between 2 Different Software Solutions.

Quantitative computed tomography (CT) can be used to quantify bone mineral density (BMD) in the spine from clinical CT scans. We aimed to determine agreement and precision of BMD measurements by 2 different methods: phantom-less internal tissue calibration and asynchronous phantom-based calibration in a cohort of patients with chronic kidney disease (CKD). Patients with CKD were recruited for CT angiography of the chest, abdomen, and pelvis. BMD was analyzed by 2 different software solutions using different calibration techniques; phantom-based by QCT Pro (Mindways Inc.) and phantom-less by Extended Brilliance Workspace (Philips Healthcare). Intraoperator reanalysis was performed on 53 patients (36%) for both methods. An interoperator reanalysis on 30 patients (20%) using the phantom-based method and 29 patients (19%) using the phantom-less method was made. XY- and Bland-Altman plots were used to evaluate method agreement. Phantom-based measured BMD was systematically higher than phantom-less measured BMD. Despite a small absolute difference of 3.3 mg/cm3 (CI: -0.2-6.9 mg/cm3 ) and a relative difference of 5.1% (CI: 2.2%-8.1%), interindividual differences were large, as seen by a wide prediction interval (PI: -47-40 mg/cm3 ). The Bland-Altman plot showed no systematic bias, apart from 5 outliers. Intraoperator variability was high for the phantom-less method (5.8%) compared to the phantom-based (0.8%) and the interoperator variability was also high for the phantom-less method (5.8%) compared to the phantom-based (1.8%). Despite high correlation between methods, the between-method difference on an individual level showed great variability. Our results suggest agreement between these 2 methods is insufficient to allow them to be used interchangeably in patients with CKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app