Add like
Add dislike
Add to saved papers

Deficiency of unc-51 like kinase 1 (Ulk1) protects against mice traumatic brain injury (TBI) by suppression of p38 and JNK pathway.

Unc-51 like autophagy activating kinase 1 (Ulk1) is a serine/threonine kinase that plays a key role in regulating autophagy processes. We attempted to investigate the effects of Ulk1 on traumatic brain injury (TBI) progression by using wild type (WT) mice and Ulk1-knockout (KO) mice suffered with or not TBI. The results were verified using LPS-treated primary astrocyte (AST). Here, Ulk1 was over-expressed in hippocampus of WT mice after TBI, as well as in lipopolysaccharide (LPS)-stimulated AST. Ulk1-deletion improved cognitive ability and hippocampus histological changes in TBI mice. Nissl and neuronal nuclei (NeuN) staining indicated that Ulk1-deletion increased the number of surviving neurons in hippocampus of TBI mice. Ulk1-ablation alleviated neuroinflammation, as evidenced by the reduced expression of hippocampus pro-inflammatory cytokines in TBI mice. TBI-induced apoptosis was also ameliorated by Ulk1-ablation, as proved by the reduced number of TUNEL-staining cells, and cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP) expressions. Moreover, Ulk1-knockout suppressed TBI-stimulated activation of astrocytes and microglia cells. Additionally, hippocampus autophagy induced by TBI was attenuated by Ulk1-knockout. Further, TBI-activated p38/c-Jun N-terminal Kinase (JNK) pathway was repressed by Ulk1-deletion in hippocampus of mice. The findings above were confirmed in LPS-stimulated AST with or without Ulk1 siRNA transfection. Intriguingly, pre-treatment of p38 or JNK activator markedly abolished the anti-inflammation, anti-apoptosis and anti-autophagy effects of Ulk1-knockdown on LPS-incubated AST. In conclusion, our results demonstrated that Ulk1 might be a potential target for developing therapeutic strategy against TBI in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app