Add like
Add dislike
Add to saved papers

A novel antibiotic wastewater degradation technique combining cavitating jets impingement with multiple synergetic methods.

Antibiotics degradation remains a longstanding challenge in wastewater treatment. Towards this objective, we have developed a novel technique combining cavitating jets impingement with multiple synergetic methods, i.e., UV/Fenton, analogous Fenton, and photocatalytic oxidation in the present work. Three kinds of antibiotics namely amoxicillin, doxycycline and sulfadiazine sodium, are selected as model pollutants. Individual application of cavitating jets impingement is firstly conducted to evaluate the effects of jets impinging forms and nozzle inlet pressure. The effects of impingement on promoting antibiotics degradation and weakening the coalescing effects of cavitation bubbles are confirmed. Perpendicular double cavitating jets impingement is proved to be the most effective impinging form and brought a COD (chemical oxidation demand) reduction of 30.04% with the impinging effect index 1.22 at jet inlet pressure 10 MPa. Increasing the jet inlet pressure can improve the COD reduction and the effectiveness of impingement. Subsequently, UV/Fenton process is introduced to intensify the degradation process. The effects of important parameters are investigated by means of orthogonal experiments and the maximum COD reduction is up to 71.16% under the optimum conditions. Then, analogous Fenton process and photocatalytic oxidation are adopted for further enhancing the COD reduction. Different approaches used in the present work are assessed in view of multiple aspects. With COD reduction of 79.92%, the combination of cavitating jets impingement, UV/Fenton, analogous Fenton and photocatalytic oxidation is proved to be optimum method for antibiotic wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app