Add like
Add dislike
Add to saved papers

Enhanced biosynthesis of dextransucrase: A multivariate approach to produce a glucosyltransferase for biocatalysis of sucrose into dextran.

The current study reported the statistically designed experimental method to enhance the biocatalytic efficacy of dextransucrase from Weissella confusa. Various environmental and nutritional parameters were optimized using multiple responses under submerged fermentation environment. Statistical models were constructed to screen the influence of nine factors on the biocatalysis of dextransucrase. Among them, fermentation time, pH, sucrose and peptone exhibited significant probability (P < 0.05) and are considered as substantial constituents in accordance with Plackett-Burman design. Central composite design was further implemented to optimize the levels of selected variables for maximum enzyme yield. The predicted optimum conditions were pH of 7.5 under fermentation time of 8 h with 30.0 g l-1 sucrose and 1.0 g l-1 peptone. The overall enzyme yield increased from 11.4 DSU ml-1 to 52.75 DSU ml-1 with 4.62-fold upsurge after the implementation of the statistical models. Furthermore, SEM analysis showed the biocatalytic conversion of sucrose into highly porous dextran when utilizing dextransucrase. The biopolymer produced under the current optimized model could be utilized as an emulsifying, gelling, stabilizing and thickening agent in food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app