Add like
Add dislike
Add to saved papers

Submarine groundwater discharge and chemical behavior of tracers in Laizhou Bay, China.

Naturally occurring radon (222 Rn) and radium isotopes are widely used to trace water mixing and submarine groundwater discharge (SGD) in the coastal zones. However, their activities in groundwater are variable both spatially and temporally. Here, time series sampling of 222 Rn and radium was conducted to investigate their behavior in intertidal groundwater of Laizhou Bay, China. The result shows that groundwater redox conditions have an important impact on the behavior of tracers. The activities of tracers will decrease under oxidizing conditions and increase under reducing conditions. Radon and radium mass balance models were used to evaluate the flushing time and SGD based on spatial surveys in Laizhou Bay. The flushing time is estimated to be 32.9-55.3 d with coupled models, which agrees well with the result of tidal prism model. The trace-derived SGD in the whole bay ranges from 6.1 × 108 to 9.0 × 108  m3 /d and the re-circulated seawater (RSGD) ranges from 5.5 × 108 to 8.5 × 108  m3 /d. The average SGD and RSGD fluxes are 22.8 and 21.1 times greater than the Yellow River discharge in April 2014, respectively. The study provides a better understanding of the dynamics of coastal groundwater and behavior of tracers in a well-studied bay system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app