Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Burst Spinal Cord Stimulation in Peripherally Injured Chronic Neuropathic Rats: A Delayed Effect.

OBJECTIVE: Two well-known spinal cord stimulation (SCS) paradigms, conventional (Con) and burst SCS, are hypothesized to exert their antinociceptive effects through different stimulation-induced mechanisms. We studied the course of the behavioral antinociceptive effect during 60 minutes of SCS and 30 minutes post-SCS in a rat model of chronic neuropathic pain.

METHODS: Animals underwent a unilateral partial sciatic nerve ligation, after which quadripolar electrodes were implanted into the epidural space at vertebral level T13 (n = 43 rats). While receiving either Con SCS or biphasic burst SCS, the pain behavior of the rats was assessed by means of paw withdrawal thresholds (WTs) in response to the application of von Frey monofilaments.

RESULTS: After 15 minutes of Con SCS (n = 21), WTs significantly differed from baseline (P = 0.04), whereas WTs of the burst SCS group (n = 22) did not. After 30 minutes of SCS, WTs of the Con SCS and burst SCS groups reached similar levels, both significantly different from baseline, indicating a comparable antinociceptive effect for these SCS paradigms. Yet, the WTs of the burst SCS group were still significantly increased compared with baseline at 30 minutes post-stimulation, whereas the WTs of the Con SCS group were not.

CONCLUSIONS: To conclude, biphasic burst SCS results in a delayed antinociceptive effect after onset of the stimulation, as compared with Con SCS, in a chronic neuropathic pain model. Furthermore, biphasic burst SCS seems to exhibit a delayed wash-out of analgesia after stimulation is turned off.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app