Add like
Add dislike
Add to saved papers

The role of sparsely distributed representations in familiarity recognition of verbal and olfactory materials.

Cognitive Processing 2018 November
We present the generalized signal detection theory (GSDT), where familiarity is described by a sparse binomial distribution of binary node activity rather than by normal distribution of familiarity. Items are presented in a distributed representation, where each node receives either noise only, or signal and noise. An old response (i.e., a "yes" response) is made if at least one node receives signal plus noise that is larger than the activation threshold, and item variability is determined by the distribution of activated nodes as the threshold is varied. A distinct representation leads to better performance and a lower ratio of new to old item variability, than a more distributed and less distinct representations. Here we apply the GSDT to empirical data on verbal and olfactory memory and suggest that verbal memory relies on a distinct neural item representation, whereas olfactory memory has a fuzzy neural representation leading to poorer memory and inducing a larger ratio of new to old item variability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app