Add like
Add dislike
Add to saved papers

The Effects of High-Dose Parathyroid Hormone Treatment on Fusion Outcomes in a Rabbit Model of Posterolateral Lumbar Spinal Fusion Alone and in Combination with Bone Morphogenetic Protein 2 Treatment.

BACKGROUND: Parathyroid hormone (PTH) (1-34) treatment reduces fracture risk in osteoporotic patients. Previously, we demonstrated in a rabbit model that low-dose PTH treatment resulted in increased fusion mass volume. As effects of PTH on bone are dose-dependent, we aimed to evaluate whether increasing dosage of PTH increases both volume and biomechanical stiffness of the resulting fusion masses and/or exhibits synergistic effects with low-dose bone morphogenetic protein 2 (BMP-2).

METHODS: Posterolateral lumbar spinal fusion surgery was performed on 60 New Zealand White rabbits divided into 6 experimental groups: iliac crest autograft alone, autograft plus 20 μg/kg/day PTH, autograft plus 40 μg/kg/day PTH, BMP-2 alone, BMP-2 plus 20 μg/kg/day PTH, and BMP-2 plus 40 μg/kg PTH. Fusion was assessed at postoperative week 6 via manual palpation, volumetric computed tomography analysis, and 4-point bending biomechanical testing.

RESULTS: All groups treated with BMP-2 fused. Increasing doses of PTH resulted in increased fusion mass volume compared with autograft alone. Autograft plus 40 μg/kg/day PTH yielded fusion mass volumes comparable to BMP-2. When the autograft groups were considered alone, increased mechanical stiffness was observed only in the 20 μg/kg/day group. No significant stiffness differences were observed between BMP-2 groups.

CONCLUSIONS: Treatment with the highest dose of PTH resulted in fusion mass volumes similar to those obtained with BMP-2. When the autograft groups were considered alone, significant increases in mechanical stiffness were observed at a dosage of 20 μg/kg/day, suggesting there may be an optimal dose of PTH in the rabbit model. Effects of BMP-2 on fusion were dominant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app