Add like
Add dislike
Add to saved papers

3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 1: Synthesis and Pharmacology.

Cyclooxygenase-1 (COX-1) is a key enzyme in the biosynthesis of proinflammatory thromboxanes and prostaglandins and is found in glial and neuronal cells within brain. COX-1 expression is implicated in numerous neuroinflammatory states. We aim to find a direct-acting positron emission tomography (PET) radioligand for imaging COX-1 in human brain as a potential biomarker of neuroinflammation and for serving as a tool in drug development. Seventeen 3-substituted 1,5-diaryl-1 H-1,2,4-triazoles were prepared as prospective COX-1 PET radioligands. From this set, three 1,5-(4-methoxyphenyl)-1 H-1,2,4-triazoles, carrying a 3-methoxy (5), 3-(1,1,1-trifluoroethoxy) (20), or 3-fluoromethoxy substituent (6), were selected for radioligand development, based mainly on their high affinities and selectivities for inhibiting human COX-1, absence of carboxyl group, moderate computed lipophilicities, and scope for radiolabeling with carbon-11 ( t1/2 = 20.4 min) or fluorine-18 ( t1/2 = 109.8 min). Methods were developed for producing [11 C]5, [11 C]20, and [ d2 -18 F]6 from hydroxy precursors in a form ready for intravenous injection for prospective evaluation in monkey with PET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app