Add like
Add dislike
Add to saved papers

Amorphous Fluoropolymer Membrane for Gas Separation Applications.

Amorphous fluoropolymers have been studied in the past few decades and received extensive attention due to their unique and useful properties. One of the remarkable properties of amorphous fluoropolymers is high fractional free volume (FFV), and they tend to retain large amounts of solvent inside their polymer chains. In this study, amorphous flouoropolymer membranes were employed to examine the influences of the residual solvent and drying condition on the thermal properties, gas permeation behavior, and structure change by the polymer chains. Thermal properties of the produced membranes were characterized by differential scanning calorimetry (DSC) and a thermogravimetric analysis (TGA) to verify the effects of residual solvent. The residual solvent content and the glass transition temperature (Tg) of amorphous fluoropolymer membranes prepared with both solvents decrease with increasing drying temperature. The effect of the thermal treatment method on the d-spacing between the polymer chains of the prepared membranes was investigated using X-ray diffraction (XRD). The d-spacing decreased with drying below the Tg whereas it drastically increased near the Tg because of chain relaxation. From these phenomena, the helium permeability of the membranes treated at 120 °C radically increased. However, the oxygen and nitrogen permeability decreased with decreasing residual solvent content. The glass transition range shifted to higher temperature, from 75 °C to 133 °C, depending on the reduced amount of residual solvent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app