Add like
Add dislike
Add to saved papers

Chemical Vapor Deposition Carbon Film as a Capping Layer in 4H-SiC Based MOSFETs.

Radio-frequency plasma enhanced CVD (RF-PECVD) carbon films were grown directly on 4-inch 4H-SiC substrates as a capping layer for MOSFET device applications. An approximately 50-nm-thick CVD carbon capping layer was found to reduce the surface roughness, as determined by atomic force microscopy (AFM). The secondary ion mass spectroscopy (SIMS) depth profile results revealed that carbon capping layer can suppress the dopant out-diffusion on the implanted surface after annealing even at high temperature (1700 °C) for 30 min. The calculated subthreshold swing (S) values of devices with CVD carbon capping layer and photo-resist process (base) measured at room temperature were 460 ± 50 (mV/dec) and 770 ± 70 (mV/dec), respectively. The lower value of 'S' for the device with carbon capping layer was related to the very low density of interface traps at the SiC-SiO2 interface. These results show the potential of CVD carbon as a capping layer for SiC MOSFET device applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app