Add like
Add dislike
Add to saved papers

Classify epithelium-stroma in histopathological images based on deep transferable network.

Journal of Microscopy 2018 April 21
Recently, the deep learning methods have received more attention in histopathological image analysis. However, the traditional deep learning methods assume that training data and test data have the same distributions, which causes certain limitations in real-world histopathological applications. However, it is costly to recollect a large amount of labeled histology data to train a new neural network for each specified image acquisition procedure even for similar tasks. In this paper, an unsupervised domain adaptation is introduced into a typical deep convolutional neural network (CNN) model to mitigate the repeating of the labels. The unsupervised domain adaptation is implemented by adding two regularisation terms, namely the feature-based adaptation and entropy minimisation, to the object function of a widely used CNN model called the AlexNet. Three independent public epithelium-stroma datasets were used to verify the proposed method. The experimental results have demonstrated that in the epithelium-stroma classification, the proposed method can achieve better performance than the commonly used deep learning methods and some existing deep domain adaptation methods. Therefore, the proposed method can be considered as a better option for the real-world applications of histopathological image analysis because there is no requirement for recollection of large-scale labeled data for every specified domain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app