Add like
Add dislike
Add to saved papers

Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst.

Advanced treatment of biologically treated coking wastewater (BTCW) using persulfate (PS) oxidation with magnetic activated carbon composite (CuFe2 O4 :AC w/w ratio of 1:1.5, denoted as 1.5-MACC) as a green catalyst was evaluated at ambient temperature (30 °C). Effects of PS (K2 S2 O8 ) and 1.5-MACC doses on PS decomposition and total organic carbon (TOC) removal in BTCW were also studied during 360 min. The results showed that the 1.5-MACC/PS system has a much better performance on TOC removal in BTCW than only 1.5-MACC or PS system. PS decomposition and TOC removal follow first-order kinetics in the 1.5-MACC/PS system. The optimum condition of the 1.5-MACC/PS system to treat BTCW is with a K2 S2 O8 dose of 4 g L-1 and 1.5-MACC dose of 5 g L-1 . Under this condition, TOC in the PS oxidation effluent is 20.4 mg L-1 with a removal efficiency of 85.4%. TOC removal is a synergistic effect of adsorption and oxidation. TOC oxidation is due to the generation of ·SO4 - via the activation of PS by CuFe2 O4 impregnated AC. The gas chromatography-mass spectrometry (GC-MS) analysis revealed that phenol compounds and esters were removed significantly by the 1.5-MACC/PS system. When 1.5-MACC was used for the fourth time in the 1.5-MACC/PS system, the removal ratio of TOC was still over 62.2% in 360 min reaction. Thus, the 1.5-MACC/PS system has a potential practical application in treatment of BTCW.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app