Add like
Add dislike
Add to saved papers

Electron paramagnetic resonance of a copper doped [(CH 3 ) 2 NH 2 ][Zn(HCOO) 3 ] hybrid perovskite framework.

We report a continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) as well as pulse electron nuclear double resonance (ENDOR) study of Cu2+ doped [(CH3 )2 NH2 ][Zn(HCOO)3 ] hybrid perovskite which exhibits a structural phase transition. The multifrequency (X, Q and W-band) CW EPR measurements allow the temperature evolution of the Cu2+ ion local environment to be studied. The spectrum of the ordered (low-temperature) phase reveals an axially distorted octahedral Cu2+ site confirming the successful replacement of the Zn2+ ions and formation of the CuO6 octahedra. The CW EPR spectrum of the disordered (high-temperature) phase shows an additional broad line which gradually diminishes on cooling. The EPR linewidth of the axially symmetric Cu2+ ion site exhibits an anomaly at the phase transition point and Arrhenius-type behavior in the disordered phase. The temperature dependent Cu2+ spin Hamiltonian parameters change abruptly at the phase transition point indicating a strong first-order character of the transition. The X-band pulse ENDOR spectrum of the ordered phase reveals several protons in the vicinity of the Cu2+ center.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app