Add like
Add dislike
Add to saved papers

Multifunctional Bilayer Template for Near-Infrared-Sensitive Organic Solar Cells.

For organic solar cells (OSCs) based on nonplanar phthalocyanines, it has previously been reported that a thin film composed of triclinic crystals with face-on (or flat-lying)-oriented molecules, typically obtained with a CuI template layer, is desired for optical absorption in the near-infrared (NIR) spectral region. However, this work demonstrates that for a PbPc-C60 donor-acceptor pair, less face-on orientation with a broader orientation distribution obtained with a new template layer consisting of a ZnPc/CuI bilayer is more desirable in terms of solar cell efficiency than the face-on orientation. A NIR-sensitive PbPc-C60 OSC employing this bilayer-templated PbPc film is found to increase the internal quantum efficiency (IQE) by 36% on average in the NIR spectral region compared to a device using a CuI-templated PbPc film. Analyses of the change in IQE using the exciton diffusion model and the entropy- and disorder-driven charge-separation model suggest that the improved IQE is attributed to the facilitated dissociation of charge-transfer excitons as well as the reduction in exciton quenching near the indium tin oxide surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app