Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Origins of Metaplasia in Barrett's Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease?

The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett's esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett's esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett's esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett's esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett's esophagus. Given that Barrett's esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app